目录

一、原理简述

二、系统硬件设计

1.电机驱动选型

1.1  L298N

1.2  L9110

1.3  DRV8833

1.4 TB6612

2.系统整体硬件设计

3.stm32主控制模块

4.舵机云台

5.超声波模块

三、系统软件设计

1.系统整体软件设计

2.电机驱动及速度的控制

3.舵机云台的控制

4.超声波测距

四、实物展示

五、完整原理图

六、完整代码


        单片机智能小车一直是大家很喜欢的小设计,智能小车的制作虽然难度不高,但是对于初学者来说,由于陌生,因此也总是觉得门槛高。事实上,很多东西都禁不起深挖,当你做完之后才会发现,原来也不过如此。

        我计划在接下来的一段时间里,断断续续地给大家带来智能小车的相关设计,由易到难。涉及蓝牙控、WIFI控、NRF24L01控制,红外遥控控制,红外、超声波避障、寻迹等。每一篇都是一个完整的设计,有着完整的软硬件分析过程,希望可以给你帮助。

        本节将制作一个超声波避障的小车。

一、原理简述

        作为智能小车,最基本的一点肯定是解决电机驱动的问题。

        现在市场上有许多适合小车电机驱动的模块,常见的有L298N、L9110S、DRV8833、TB6612等。这些芯片/模块各有优劣,但是控制原理和方法基本相似。这些芯片/模块的详细介绍可以参照第二章系统硬件设计,将详细地介绍上述几个芯片/模块的重要参数以及使用方法。

        电机驱动解决后,接下来就是超声波模块。超声波配合舵机,可以轻松实现避障,使得小车看上去更加智能。

        本设计主将以stm32为核心,配合电机驱动、舵机和超声波模块,实现小车的自动避障功能。

二、系统硬件设计

1.电机驱动选型

1.1  L298N

工作电压:2.5~46V,

单通道最大输出电流:2A,

逻辑电源(Vss):4.5~7V,

低电平输入范围:-0.3~1.5V,

高电平输入范围:2.3~Vss,

可驱动两路电机。

应用电路图:

                

         上述应用电路为参考电路,VS和VSS都可以使用5V(不建议使用3.3V),IN输入以及PWM可以使用5V或者3.3V单片机,注意PCB板布线适当加粗,且供电电池保持充足电量。

1.2  L9110

工作电压:2.5V~12V,

连续电流输出能力:DIP8  1.0A(8V)

                                SOP8  0.8A(8V),

输入高电平:2.5V~10V

输入低电平:<0.7V,

单路输出。

真值表:

应用电路图:

                                                  

1.3  DRV8833

输入电压:2.7V~10.8V,

输出电流(VM = 5V,25°C 时),

– 采用 PWP/RTY 封装:每条 H 桥的 RMS 电流为 1.5A,峰值电流为 2A;

– 采用 PW 封装:每条 H 桥的 RMS 电流为500mA,峰值电流为 2A;

• 可以将输出并联,以实现

– 3A RMS 电流、4A 峰值电流(PWP 和 RTY 封装);

– 1A RMS 电流、4A 峰值电流(PW 封装);

可驱动两路电机。

应用电路图:

             

       上述应用电路为参考电路,IN输入以及PWM可以使用5V或者3.3V单片机,注意PCB板布线适当加粗,且供电电池保持充足电量。

1.4  TB6612

输入电压:

         VCC:2.7~5.5V       芯片小信号电源

         VM:2.5~13.5V    电机供电

电流:MAX 1.0A   VM>=4.5V

           MAX 0.4A   2.5<=VM<4.5V

PWM:最大支持100KHz。

可驱动两路电机。

真值表:

 应用电路图:

        这些芯片各有优劣,可根据实际情况选择合适的芯片。在本设计中,将采用TB6612作为电机驱动。值得说明的是,目前TB6612已经停产,且价格相对高昂,请谨慎选择。(那为什么我会选择这个呢,因为我还有库存,顺便用了,哈哈哈哈)

2.系统整体硬件设计

        在本设计中,硬件分为stm32主控制模块、TB6612电机驱动模块、超声波模块、舵机模块四个部分。其整体逻辑如下图所示:

        这里需要注意电池的选型,建议选择三洋、松下、索尼等品牌,这些品牌的电池一般输出电流稳定,动力充足。不能贪便宜,否则到时候效果不佳,坑害的是自己。

3.stm32主控制模块

        stm32最小系统板原理图如下所示(看不清请放大):

         stm32f103c8t6为意法半导体生产的一款高性能32位处理器,采用ARM cortex-M3为内核,在稳定运行的情况下,主频可高达72M,是传统51单片机的性能的几十倍,能完成许多复杂的功能。其最小系统主要包括:stm32芯片、复位电路、时钟电路、电源电路、代码烧录电路和boot选择电路。

        stm32f103c8t6用着丰富的外设,例如GPIO、USART、ADC、PWM、TIMER、硬件SPI、硬件IIC、USB等。在本设计中,将会使用到的它的外设有:GPIO、TIMER和PWM。其中,GPIO和TIMER用于控制电机正反转、控制超声波测距以及舵机转向引脚的信号;PWM用于调节电机转速。
 

4.舵机云台

        舵机云台采用常用的SG90,其实物图如下:

                    

        SG90只有三根线:VCC、GND和信号线(4-6V供电,信号引脚可用5V,也可用3.3V)。其中信号线就是控制舵机旋转的。控制原理图很简单,只需要控制单片机产生周期为20ms,高电平在0.5ms~2.5ms之间的一个方波,事实上,经过实际测试,周期在3-20ms都是可以的。舵机最大只能180°旋转,这里,我们以90°的位置为中心线,具体旋转情况如下(注意左右偏的参考点,这里只表示两种偏向):

       高电平为1.5ms时,舵机位于中心位置。

        高电平为0.5ms时,舵机左偏90°。

        高电平为2.5ms时,舵机右偏90°。

        具体软件控制方法,将在软件部分详细介绍。

5.超声波模块

        超声波测距模块的实物图如下:

                                            

                    

            超声波模块时利用声波在空气中传输的为原理而设计的。模块通过trig引脚启动声波,此时开始计时,当发出的声波遇到障碍物就会反弹,反弹回来的声波会被超声波模块的探头接收,此时echo引脚状态将发生改变,计时停止,根据声波在控制中传播速度,就可以很方便计算出超声波距离障碍物的距离。

        此模块的供电为5V,trig和echo可接5V单片机,也可以接3.3V单片机。

三、系统软件设计

1.系统整体软件设计

        软件的整体流程图如下:

        stm32首先需要将所有需要用到外设进行初始化,然后进入主循环,不断地进行超声波测距并显示,当前方遇到障碍物时,将启动舵机左右旋转进行分别测距,并将两个距离值进行比较,然后车身往距离更大的一方旋转。如此往复,就完成了整个超声波避障的过程。

2.电机驱动及速度的控制

        在本设计中,电机速度控制由两路PWM控制,分别接在了stm32的PB6和PB9上,为TIM4的通道一和通道四,但由于本设计使用的stm32具体型号为stm32f103c6t6,其外设并没有TIM4,因此,这里采用定时器周期变化产生PWM。事实上,可将TB6612的PWMA和PWMB直接接高电平,这样,电机将在该电压下最高功率运行,但是这样不利于控制。

        在使用定时器周期变化产生PWM前,首先需要初始化TB6612连接stm32的所有GPIO,其初始化代码如下所示:


void TB6612_GPIO_Init(void)
{
	GPIO_InitTypeDef  GPIO_InitStructure;

	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);	 //使能PB端口时钟
	
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6|GPIO_Pin_9;				
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; 		 //推挽输出
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;		 //IO口速度为50MHz
	GPIO_Init(GPIOB, &GPIO_InitStructure);					 //根据设定参数初始化
	GPIO_ResetBits(GPIOB,GPIO_Pin_6|GPIO_Pin_9);	

	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_12|GPIO_Pin_13|GPIO_Pin_14|GPIO_Pin_15;				
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; 		 //推挽输出
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;		 //IO口速度为50MHz
	GPIO_Init(GPIOB, &GPIO_InitStructure);					 //根据设定参数初始化
	GPIO_ResetBits(GPIOB,GPIO_Pin_12|GPIO_Pin_13|GPIO_Pin_14|GPIO_Pin_15);	
}

       为了使用这些GPIO方便,不妨使用宏定义来给这些GPIO重新起个名字,如下:

#define PWMA PBout(6)
#define PWMB PBout(9)

#define AIN1 PBout(14)
#define AIN2 PBout(13)

#define BIN1 PBout(15)
#define BIN2 PBout(12)

       使用stm32定时器,首先需要使能所在总线时钟,然后设置定时器定时时间及定时方式,打开定时器,最后编写定时器中断服务函数即可。其具体代码如下:


void TIM1_Int_Init(u16 arr,u16 psc)
{
	TIM_TimeBaseInitTypeDef  TIM_TimeBaseStructure;
	NVIC_InitTypeDef NVIC_InitStructure;

	RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE); //时钟使能

	TIM_TimeBaseStructure.TIM_Period = arr; //设置在下一个更新事件装入活动的自动重装载寄存器周期的值	
	TIM_TimeBaseStructure.TIM_Prescaler =psc; //设置用来作为TIMx时钟频率除数的预分频值  
	TIM_TimeBaseStructure.TIM_ClockDivision = 0; //设置时钟分割:TDTS = Tck_tim
	TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;  //TIM向上计数模式
	TIM_TimeBaseInit(TIM1, &TIM_TimeBaseStructure); //根据TIM_TimeBaseInitStruct中指定的参数初始化TIMx的时间基数单位
 
	TIM_ITConfig(TIM1,TIM_IT_Update,ENABLE ); //使能指定的TIM3中断,允许更新中断

	NVIC_InitStructure.NVIC_IRQChannel = TIM1_UP_IRQn;  //TIM3中断
	NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;  //先占优先级0级
	NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3;  //从优先级3级
	NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //IRQ通道被使能
	NVIC_Init(&NVIC_InitStructure);  //根据NVIC_InitStruct中指定的参数初始化外设NVIC寄存器

	TIM_Cmd(TIM1, ENABLE);  //使能TIMx外设
							 
}
//定时器3中断服务程序
void TIM1_UP_IRQHandler(void)   //TIM3中断
{
	if (TIM_GetITStatus(TIM1, TIM_IT_Update) != RESET) //检查指定的TIM中断发生与否:TIM 中断源 
	{
		TIM_ClearITPendingBit(TIM1, TIM_IT_Update  );  //清除TIMx的中断待处理位:TIM 中断源 
		PWMA = !PWMA;
		PWMB = !PWMB;
	}
}

        然后在主函数中调用这两个函数,这里不妨控制定时器的频率为100KHz,产生的PWM频率为50KHz,占空比为50%,如下:

TB6612_GPIO_Init();
TIM1_Int_Init(719, 0);//72000000/720 =  100 000

        如果想让电机控制的速度更快,直接加大定时器3的占空比即可。

        最后就是小车前进、后退,左转、右转和停止的控制了,这个相对简单,具体代码如下:

void go_straight(void)
{
	AIN1 = 1;
	AIN2 = 0;
	BIN1 = 1;
	BIN2 = 0;
}

void go_back(void)
{
	AIN1 = 0;
	AIN2 = 1;
	BIN1 = 0;
	BIN2 = 1;
}

void ture_right(void)
{
	AIN1 = 1;
	AIN2 = 0;
	BIN1 = 0;
	BIN2 = 1;
}

void ture_left(void)
{
	AIN1 = 0;
	AIN2 = 1;
	BIN1 = 1;
	BIN2 = 0;
}

void stop(void)
{
	AIN1 = 0;
	AIN2 = 0;
	BIN1 = 0;
	BIN2 = 0;
}

        至此,有关电机的控制结束,事实上,换用其他的电机驱动芯片,其驱动方式和上面驱动方式大同小异,甚至直接照搬照抄就可以。

3.舵机云台的控制

        舵机云台的控制原理在前文中已经简单介绍过,软件部分,将采用PWM来控制舵机的转动。在原理图的设计中,舵机信号的控制引脚连接到了STM32的PB5,为定时器3的通道2,因此,这里需要开启stm32定时3通道2的PWM初始化。如下:

void TIM3_PWM_SG90_Init(u16 arr,u16 psc)
{  
	GPIO_InitTypeDef GPIO_InitStructure;
	TIM_TimeBaseInitTypeDef  TIM_TimeBaseStructure;
	TIM_OCInitTypeDef  TIM_OCInitStructure;
	

	RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);	//使能定时器3时钟
 	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB  | RCC_APB2Periph_AFIO, ENABLE);  //使能GPIO外设和AFIO复用功能模块时钟
	
	GPIO_PinRemapConfig(GPIO_PartialRemap_TIM3, ENABLE); //Timer3部分重映射  TIM3_CH2->PB5    
 
   //设置该引脚为复用输出功能,输出TIM3 CH2的PWM脉冲波形	GPIOB.5
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5; //TIM_CH2
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;  //复用推挽输出
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOB, &GPIO_InitStructure);//初始化GPIO
 
   //初始化TIM3
	TIM_TimeBaseStructure.TIM_Period = arr; //设置在下一个更新事件装入活动的自动重装载寄存器周期的值
	TIM_TimeBaseStructure.TIM_Prescaler =psc; //设置用来作为TIMx时钟频率除数的预分频值 
	TIM_TimeBaseStructure.TIM_ClockDivision = 0; //设置时钟分割:TDTS = Tck_tim
	TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;  //TIM向上计数模式
	TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure); //根据TIM_TimeBaseInitStruct中指定的参数初始化TIMx的时间基数单位
	
	//初始化TIM3 Channel2 PWM模式	 
	TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM2; //选择定时器模式:TIM脉冲宽度调制模式2
 	TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; //比较输出使能
	TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_Low; //输出极性:TIM输出比较极性高
	TIM_OC2Init(TIM3, &TIM_OCInitStructure);  //根据T指定的参数初始化外设TIM3 OC2

	TIM_OC2PreloadConfig(TIM3, TIM_OCPreload_Enable);  //使能TIM3在CCR2上的预装载寄存器
 
	TIM_Cmd(TIM3, ENABLE);  //使能TIM3
	

}

        同样,为了使用方便,这里将一些GPIO,频率,旋转角度等(这里需要联系舵机的控制原理来理解,这里就不再赘述)相关信息,用宏来定义:

#define TIM3_PWM_SG90_PERIOD 	(1200-1)
#define TIM3_PWM_SG90_PRESCALER (1200-1)

/* 频率50HZ 20ms */
#define SG90_PWM_FREQ  72000000/((TIM3_PWM_SG90_PERIOD)*(TIM3_PWM_SG90_PRESCALER))

#define SG90_CENTRE  	((int)(1.5/20*TIM3_PWM_SG90_PERIOD))
#define SG90_RIGHT	    ((int)(0.5/20*TIM3_PWM_SG90_PERIOD))
#define SG90_LEFT		((int)(2.5/20*TIM3_PWM_SG90_PERIOD))

        PWM的频率为50Hz,及20ms,在主函数调用:

TIM3_PWM_SG90_Init(TIM3_PWM_SG90_PERIOD,TIM3_PWM_SG90_PRESCALER);//PWM频率=72000/((1200)*(1200))=50hz 

        后续只需要在需要控制舵机旋转时,调用函数即可,例如,我想控制舵机云台左转,这里这么操作:

TIM_SetCompare2(TIM3, SG90_LEFT);

4.超声波测距

        超声波的控制原理同样在硬件介绍章节中做了介绍。具体的可以查看超声波模块的数据手册。

        首先,需要初始化一个定时器,用于后面对于声波发出到返回的计时,这里使用stm32的定时器2来计时,其初始化函数如下:

void TIM2_Ultrasonic_Init(void)
{
	TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructer;
	NVIC_InitTypeDef NVIC_InitStructer;


	RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);
	
	/*定时器TIM2初始化*/
	TIM_DeInit(TIM2);
	TIM_TimeBaseInitStructer.TIM_Period = 999;//定时周期为1000
	TIM_TimeBaseInitStructer.TIM_Prescaler = 71; //分频系数72
	TIM_TimeBaseInitStructer.TIM_ClockDivision = TIM_CKD_DIV1;//不分频
	TIM_TimeBaseInitStructer.TIM_CounterMode = TIM_CounterMode_Up;
	TIM_TimeBaseInit(TIM2, &TIM_TimeBaseInitStructer);
	
	TIM_ITConfig(TIM2, TIM_IT_Update, ENABLE);//开启更新中断
	
	NVIC_InitStructer.NVIC_IRQChannelPreemptionPriority = 2;
	NVIC_InitStructer.NVIC_IRQChannelSubPriority = 2;
	NVIC_InitStructer.NVIC_IRQChannel = TIM2_IRQn;
	NVIC_InitStructer.NVIC_IRQChannelCmd = ENABLE;
	
	NVIC_Init(&NVIC_InitStructer);
	TIM_Cmd(TIM2, DISABLE);//关闭定时器使能

}

        然后就可以开始测距了。

        需要控制超声波发出声波,如下:

GPIO_SetBits(TRIG_PORT, TRIG_PIN);  //拉高信号,作为触发信号
delay_us(20);  						//高电平信号超过10us
GPIO_ResetBits(TRIG_PORT, TRIG_PIN);

        然后,需要等待超声波遇到障碍物回弹,同时开启定时器计时:

/*等待回响信号*/
while(GPIO_ReadInputDataBit(ECHO_PORT, ECHO_PIN) == RESET);
TIM_Cmd(TIM2,ENABLE);//回响信号到来,开启定时器计数
		
while(GPIO_ReadInputDataBit(ECHO_PORT, ECHO_PIN) == SET);//回响信号消失
TIM_Cmd(TIM2, DISABLE);//关闭定时器

        得到从定时器开启到结束的时间:

tim = TIM_GetCounter(TIM2);//获取计TIM2数寄存器中的计数值,一边计算回响信号时间

        得到这个时间后,根据声波在空气中传播的速度为340m/s(25℃),就可以得到超声波模块距离障碍物的大致距离(单位:cm):

distance = (tim + overcount * 1000) / 58.0;//通过回响信号计算距离

        为了使得测量的距离更加准确和稳定,这里采用多次测量求平均值的方法:去掉一个最大值,去掉一个最小值,然后求平均值。如下:

float get_ultrasonic_distance(void)
{
	float distance = 0;
	u16 tim;
	GPIO_SetBits(TRIG_PORT, TRIG_PIN);  //拉高信号,作为触发信号
	delay_us(20);  						//高电平信号超过10us
	GPIO_ResetBits(TRIG_PORT, TRIG_PIN);

	/*等待回响信号*/
	while(GPIO_ReadInputDataBit(ECHO_PORT, ECHO_PIN) == RESET);
	TIM_Cmd(TIM2,ENABLE);//回响信号到来,开启定时器计数
		
	while(GPIO_ReadInputDataBit(ECHO_PORT, ECHO_PIN) == SET);//回响信号消失
	TIM_Cmd(TIM2, DISABLE);//关闭定时器
		
	tim = TIM_GetCounter(TIM2);//获取计TIM2数寄存器中的计数值,一边计算回响信号时间
		
	distance = (tim + overcount * 1000) / 58.0;//通过回响信号计算距离
		
	TIM2->CNT = 0;  //将TIM2计数寄存器的计数值清零
	overcount = 0;  //中断溢出次数清零
	delay_ms(1);
	return distance;		//距离作为函数返回值
}


void bubble(unsigned long *a, int n)

{
  int i, j, temp;
  for (i = 0; i < n - 1; i++)
  {
    for (j = i + 1; j < n; j++)
    {
      if (a[i] > a[j])
      {
        temp = a[i];
        a[i] = a[j];
        a[j] = temp;
      }
    }
  }
}

float get_average_distance(void)
{
	float Distance;
	unsigned long ultrasonic[5] = {0};
	int a,num = 0;
	int lastDistance;
	while (num < 5)
	{
		Distance = get_ultrasonic_distance();
		while(((int)Distance >= 500 || (int)Distance == 0))
		{
			Distance = get_ultrasonic_distance();
		}

		if(Distance >0 || (int)Distance <500)
		{
			ultrasonic[num] = Distance;
			//lastDistance=Distance;
			num++;
			delay_ms(10);
		}

	}
	num = 0;
	bubble(ultrasonic, 5);
	Distance = (ultrasonic[1] + ultrasonic[2] + ultrasonic[3]) / 3;
	return Distance;
	//printf("Distance=%d\n",Distance);
}

          至此,超声波测距介绍结束。

四、实物展示

 

 

五、完整原理图

六、完整代码

pwm.c

#include "pwm.h"

//TIM3 PWM部分初始化 
//PWM输出初始化
//arr:自动重装值
//psc:时钟预分频数
void TIM3_PWM_SG90_Init(u16 arr,u16 psc)
{  
	GPIO_InitTypeDef GPIO_InitStructure;
	TIM_TimeBaseInitTypeDef  TIM_TimeBaseStructure;
	TIM_OCInitTypeDef  TIM_OCInitStructure;
	

	RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);	//使能定时器3时钟
 	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB  | RCC_APB2Periph_AFIO, ENABLE);  //使能GPIO外设和AFIO复用功能模块时钟
	
	GPIO_PinRemapConfig(GPIO_PartialRemap_TIM3, ENABLE); //Timer3部分重映射  TIM3_CH2->PB5    
 
   //设置该引脚为复用输出功能,输出TIM3 CH2的PWM脉冲波形	GPIOB.5
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5; //TIM_CH2
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;  //复用推挽输出
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOB, &GPIO_InitStructure);//初始化GPIO
 
   //初始化TIM3
	TIM_TimeBaseStructure.TIM_Period = arr; //设置在下一个更新事件装入活动的自动重装载寄存器周期的值
	TIM_TimeBaseStructure.TIM_Prescaler =psc; //设置用来作为TIMx时钟频率除数的预分频值 
	TIM_TimeBaseStructure.TIM_ClockDivision = 0; //设置时钟分割:TDTS = Tck_tim
	TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;  //TIM向上计数模式
	TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure); //根据TIM_TimeBaseInitStruct中指定的参数初始化TIMx的时间基数单位
	
	//初始化TIM3 Channel2 PWM模式	 
	TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM2; //选择定时器模式:TIM脉冲宽度调制模式2
 	TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; //比较输出使能
	TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_Low; //输出极性:TIM输出比较极性高
	TIM_OC2Init(TIM3, &TIM_OCInitStructure);  //根据T指定的参数初始化外设TIM3 OC2

	TIM_OC2PreloadConfig(TIM3, TIM_OCPreload_Enable);  //使能TIM3在CCR2上的预装载寄存器
 
	TIM_Cmd(TIM3, ENABLE);  //使能TIM3
	

}

pwm.h

#ifndef __PWM_H
#define __PWM_H
#include "sys.h"

#define TIM3_PWM_SG90_PERIOD 	(1200-1)
#define TIM3_PWM_SG90_PRESCALER (1200-1)

/* 频率50HZ 20ms */
#define SG90_PWM_FREQ  72000000/((TIM3_PWM_SG90_PERIOD)*(TIM3_PWM_SG90_PRESCALER))

#define SG90_CENTRE  	((int)(1.5/20*TIM3_PWM_SG90_PERIOD))
#define SG90_RIGHT	((int)(0.5/20*TIM3_PWM_SG90_PERIOD))
#define SG90_LEFT		((int)(2.5/20*TIM3_PWM_SG90_PERIOD))
	

void TIM3_Int_Init(u16 arr,u16 psc);
void TIM3_PWM_SG90_Init(u16 arr,u16 psc);

#endif

car.c

#include "car.h"


void TIM1_Int_Init(u16 arr,u16 psc)
{
	TIM_TimeBaseInitTypeDef  TIM_TimeBaseStructure;
	NVIC_InitTypeDef NVIC_InitStructure;

	RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE); //时钟使能

	TIM_TimeBaseStructure.TIM_Period = arr; //设置在下一个更新事件装入活动的自动重装载寄存器周期的值	
	TIM_TimeBaseStructure.TIM_Prescaler =psc; //设置用来作为TIMx时钟频率除数的预分频值  
	TIM_TimeBaseStructure.TIM_ClockDivision = 0; //设置时钟分割:TDTS = Tck_tim
	TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;  //TIM向上计数模式
	TIM_TimeBaseInit(TIM1, &TIM_TimeBaseStructure); //根据TIM_TimeBaseInitStruct中指定的参数初始化TIMx的时间基数单位
 
	TIM_ITConfig(TIM1,TIM_IT_Update,ENABLE ); //使能指定的TIM1中断,允许更新中断

	NVIC_InitStructure.NVIC_IRQChannel = TIM3_UP_IRQn;  //TIM3中断
	NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;  //先占优先级0级
	NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3;  //从优先级3级
	NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //IRQ通道被使能
	NVIC_Init(&NVIC_InitStructure);  //根据NVIC_InitStruct中指定的参数初始化外设NVIC寄存器

	TIM_Cmd(TIM1, ENABLE);  //使能TIMx外设
							 
}
//定时器1中断服务程序
void TIM1_UP_IRQHandler(void)   //TIM1中断
{
	if (TIM_GetITStatus(TIM1, TIM_IT_Update) != RESET) //检查指定的TIM中断发生与否:TIM 中断源 
	{
		TIM_ClearITPendingBit(TIM1, TIM_IT_Update  );  //清除TIMx的中断待处理位:TIM 中断源 
		PWMA = !PWMA;
		PWMB = !PWMB;
	}
}


void TB6612_GPIO_Init(void)
{
	GPIO_InitTypeDef  GPIO_InitStructure;

	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);	 //使能PB端口时钟
	
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6|GPIO_Pin_9;				
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; 		 //推挽输出
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;		 //IO口速度为50MHz
	GPIO_Init(GPIOB, &GPIO_InitStructure);					 //根据设定参数初始化
	GPIO_ResetBits(GPIOB,GPIO_Pin_6|GPIO_Pin_9);	

	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_12|GPIO_Pin_13|GPIO_Pin_14|GPIO_Pin_15;				
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; 		 //推挽输出
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;		 //IO口速度为50MHz
	GPIO_Init(GPIOB, &GPIO_InitStructure);					 //根据设定参数初始化
	GPIO_ResetBits(GPIOB,GPIO_Pin_12|GPIO_Pin_13|GPIO_Pin_14|GPIO_Pin_15);	
}


void go_straight(void)
{
	AIN1 = 1;
	AIN2 = 0;
	BIN1 = 1;
	BIN2 = 0;
}

void go_back(void)
{
	AIN1 = 0;
	AIN2 = 1;
	BIN1 = 0;
	BIN2 = 1;
}

void ture_right(void)
{
	AIN1 = 1;
	AIN2 = 0;
	BIN1 = 0;
	BIN2 = 1;
}

void ture_left(void)
{
	AIN1 = 0;
	AIN2 = 1;
	BIN1 = 1;
	BIN2 = 0;
}

void stop(void)
{
	AIN1 = 0;
	AIN2 = 0;
	BIN1 = 0;
	BIN2 = 0;
}

car.h

#ifndef __CAR_H__
#define __CAR_H__

#include "sys.h"
#include "delay.h"

#define PWMA PBout(6)
#define PWMB PBout(9)

#define AIN1 PBout(14)
#define AIN2 PBout(13)

#define BIN1 PBout(15)
#define BIN2 PBout(12)


void TIM3_Int_Init(u16 arr,u16 psc);
void TB6612_GPIO_Init(void);
void go_straight(void);
void ture_left(void);
void go_back(void);
void ture_right(void);
void stop(void);

#endif

ultrasonic.c

#include "ultrasonic.h"

/*记录定时器溢出次数*/
unsigned int overcount = 0;

void ultrasonic_gpio_init(void)
{
    GPIO_InitTypeDef  GPIO_InitStructure;
	RCC_APB2PeriphClockCmd(TRIG_RCC, ENABLE);
    RCC_APB2PeriphClockCmd(ECHO_RCC, ENABLE);
	GPIO_InitStructure.GPIO_Pin = TRIG_PIN;	
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; 
	GPIO_Init(TRIG_PORT, &GPIO_InitStructure);
    
    GPIO_InitStructure.GPIO_Pin = ECHO_PIN;	
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPD; 
	GPIO_Init(ECHO_PORT, &GPIO_InitStructure);
}

void TIM2_Ultrasonic_Init(void)
{
	TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructer;
	NVIC_InitTypeDef NVIC_InitStructer;


	RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);
	
	/*定时器TIM2初始化*/
	TIM_DeInit(TIM2);
	TIM_TimeBaseInitStructer.TIM_Period = 999;//定时周期为1000
	TIM_TimeBaseInitStructer.TIM_Prescaler = 71; //分频系数72
	TIM_TimeBaseInitStructer.TIM_ClockDivision = TIM_CKD_DIV1;//不分频
	TIM_TimeBaseInitStructer.TIM_CounterMode = TIM_CounterMode_Up;
	TIM_TimeBaseInit(TIM2, &TIM_TimeBaseInitStructer);
	
	TIM_ITConfig(TIM2, TIM_IT_Update, ENABLE);//开启更新中断

	/*定时器中断初始化*/
	NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);
	
	NVIC_InitStructer.NVIC_IRQChannelPreemptionPriority = 2;
	NVIC_InitStructer.NVIC_IRQChannelSubPriority = 2;
	NVIC_InitStructer.NVIC_IRQChannel = TIM2_IRQn;
	NVIC_InitStructer.NVIC_IRQChannelCmd = ENABLE;
	
	NVIC_Init(&NVIC_InitStructer);
	TIM_Cmd(TIM2, DISABLE);//关闭定时器使能

}

void TIM2_IRQHandler(void) //中断,当回响信号很长是,计数值溢出后重复计数,用中断来保存溢出次数
{
	if(TIM_GetITStatus(TIM2,TIM_IT_Update) != RESET)
	{
		TIM_ClearITPendingBit(TIM2, TIM_IT_Update);//清除中断标志
		overcount++;	
	}
}
float get_ultrasonic_distance(void)
{
	float distance = 0;
	u16 tim;
	GPIO_SetBits(TRIG_PORT, TRIG_PIN);  //拉高信号,作为触发信号
	delay_us(20);  						//高电平信号超过10us
	GPIO_ResetBits(TRIG_PORT, TRIG_PIN);

	/*等待回响信号*/
	while(GPIO_ReadInputDataBit(ECHO_PORT, ECHO_PIN) == RESET);
	TIM_Cmd(TIM2,ENABLE);//回响信号到来,开启定时器计数
		
	while(GPIO_ReadInputDataBit(ECHO_PORT, ECHO_PIN) == SET);//回响信号消失
	TIM_Cmd(TIM2, DISABLE);//关闭定时器
		
	tim = TIM_GetCounter(TIM2);//获取计TIM2数寄存器中的计数值,一边计算回响信号时间
		
	distance = (tim + overcount * 1000) / 58.0;//通过回响信号计算距离
		
	TIM2->CNT = 0;  //将TIM2计数寄存器的计数值清零
	overcount = 0;  //中断溢出次数清零
	delay_ms(1);
	return distance;		//距离作为函数返回值
}


void bubble(unsigned long *a, int n)

{
  int i, j, temp;
  for (i = 0; i < n - 1; i++)
  {
    for (j = i + 1; j < n; j++)
    {
      if (a[i] > a[j])
      {
        temp = a[i];
        a[i] = a[j];
        a[j] = temp;
      }
    }
  }
}

float get_average_distance(void)
{
	float Distance;
	unsigned long ultrasonic[5] = {0};
	int a,num = 0;
	int lastDistance;
	while (num < 5)
	{
		Distance = get_ultrasonic_distance();
		while(((int)Distance >= 500 || (int)Distance == 0))
		{
			Distance = get_ultrasonic_distance();
		}

		if(Distance >0 || (int)Distance <500)
		{
			ultrasonic[num] = Distance;
			//lastDistance=Distance;
			num++;
			delay_ms(10);
		}

	}
	num = 0;
	bubble(ultrasonic, 5);
	Distance = (ultrasonic[1] + ultrasonic[2] + ultrasonic[3]) / 3;
	return Distance;
	//printf("Distance=%d\n",Distance);
}

ultrasonic.h

#ifndef __ULTRASONIC_H__
#define __ULTRASONIC_H__

#include "delay.h"
#include "sys.h"

#define TRIG_RCC		RCC_APB2Periph_GPIOB
#define ECHO_RCC		RCC_APB2Periph_GPIOB

#define TRIG_PIN		GPIO_Pin_8
#define ECHO_PIN		GPIO_Pin_7

#define TRIG_PORT		GPIOB
#define ECHO_PORT		GPIOB

void ultrasonic_gpio_init(void);
void TIM2_Ultrasonic_Init(void);
float get_ultrasonic_distance(void);
void bubble(unsigned long *a, int n);
float get_average_distance(void);

#endif

main.c

#include "led.h"
#include "delay.h"
#include "sys.h"
#include "pwm.h"
#include "lcd1602.h"
#include "ultrasonic.h"
#include <stdio.h>
#include <string.h>
#include "car.h"

u8 display_buf[16] = {0};

int main(void)
{	
	float left_distance = 0.0;
	float right_distance = 0.0;
	float current_distance = 0.0;
	NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);
	delay_init();	    	  
	LED_Init();		  
	LCD1602_Init();   
	TIM3_PWM_SG90_Init(TIM3_PWM_SG90_PERIOD,TIM3_PWM_SG90_PRESCALER);//PWM频率=72000/((1200)*(1200))=50hz 
   
    ultrasonic_gpio_init();
	TIM2_Ultrasonic_Init();
    
	TB6612_GPIO_Init();
	TIM1_Int_Init(719, 0);//72000000/720 =  100KHz 
	TIM_SetCompare2(TIM3, SG90_CENTRE);
    delay_ms(1000);
	while(1)
	{
		current_distance = get_average_distance();
        sprintf((char *)display_buf, "dis:%3.0fcm   ", current_distance);
		LCD1602_Show_Str(0,0,display_buf, strlen((char *)display_buf));
		if(current_distance <= 30.0)  //距离小于30cm
		{
			stop();  //停止
			delay_ms(100);
			TIM_SetCompare2(TIM3, SG90_LEFT); //舵机左转
			delay_ms(1000);
			left_distance = get_average_distance(); //得到左边的距离
			TIM_SetCompare2(TIM3, SG90_RIGHT); //右转
			delay_ms(1000);
			right_distance = get_average_distance(); //得到右边的距离
           
            TIM_SetCompare2(TIM3, SG90_CENTRE);
             delay_ms(1000);
            if(left_distance > right_distance)
            {
                go_back();
                delay_ms(600);
                ture_left();
                delay_ms(300);
            }
            else 
            {
                go_back();
                delay_ms(600);
                ture_right();
                delay_ms(300);
            }
		}
        else
        {
            go_straight();
        }

	} 
}

注:工程源码的模板参考正点原子stm32f103系列标准库版。

转自:https://blog.csdn.net/LH_SMD/article/details/123492372